Computing Matrix Symmetrizers, Part 2: new Methods using Eigendata and Linear Means; a Comparison∗

نویسندگان

  • Froilán Dopico
  • Frank Uhlig
چکیده

Over any field F every square matrix A can be factored into the product of two symmetric matrices as A = S1 ·S2 with Si = S i ∈ F and either factor can be chosen nonsingular, as was discovered by Frobenius in 1910. Frobenius’ symmetric matrix factorization has been lying almost dormant for a century. The first successful method for computing matrix symmetrizers, i.e., symmetric matrices S such that SA is symmetric, was inspired by an iterative linear systems algorithm of Huang and Nong (2010) in 2013 [29, 30]. The resulting iterative algorithm has solved this computational problem over R and C, but at high computational cost. This paper develops and tests another linear equations solver, as well as eigenand principal vector or Schur Normal Form based algorithms for solving the matrix symmetrizer problem numerically. Four new eigendata based algorithms use, respectively, SVD based principal vector chain constructions, Gram-Schmidt orthogonalization techniques, the Arnoldi method, or the Schur Normal Form of A in their formulations. They are helped by Datta’s 1973 method that symmetrizes unreduced Hessenberg matrices directly. The eigendata based methods work well and quickly for generic matrices A and create well conditioned matrix symmetrizers through eigenvector dyad accumulation. But all of the eigen based methods have differing deficiencies with matrices A that have ill-conditioned or complicated eigen structures with nontrivial Jordan normal forms. Our symmetrizer studies for matrices with ill-conditioned eigensystems lead to two open problems of matrix optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

Determination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial

Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...

متن کامل

An interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers

The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

SOLVING FUZZY LINEAR SYSTEMS BY USING THE SCHUR COMPLEMENT WHEN COEFFICIENT MATRIX IS AN M-MATRIX

This paper analyzes a linear system of equations when the righthandside is a fuzzy vector and the coefficient matrix is a crisp M-matrix. Thefuzzy linear system (FLS) is converted to the equivalent crisp system withcoefficient matrix of dimension 2n × 2n. However, solving this crisp system isdifficult for large n because of dimensionality problems . It is shown that thisdifficulty may be avoide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015